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Use of transmission and reflection complex time delays to reveal scattering matrix poles and zeros:
Example of the ring graph
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We identify the poles and zeros of the scattering matrix of a simple quantum graph by means of systematic
measurement and analysis of Wigner, transmission, and reflection complex time delays. We examine the ring
graph because it displays both shape and Feshbach resonances, the latter of which arises from an embedded
eigenstate on the real frequency axis. Our analysis provides a unified understanding of the so-called shape,
Feshbach, electromagnetically induced transparency, and Fano resonances on the basis of the distribution of poles
and zeros of the scattering matrix in the complex frequency plane. It also provides a first-principles understanding
of sharp resonant scattering features and associated large time delay in a variety of practical devices, including
photonic microring resonators, microwave ring resonators, and mesoscopic ring-shaped conductor devices. Our
analysis involves use of the reflection time difference, as well as a comprehensive use of complex time delay, to
analyze experimental scattering data.
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I. INTRODUCTION

We are concerned with the general scattering properties of
complex systems connected to the outside world through a
finite number of ports or channels. The systems of interest
have a closed counterpart, described by a Hamiltonian H , that
has a spectrum of modes. Excitations can be introduced to, or
removed from, the interaction zone of the scattering system
by means of the M ports or channels. The scattering matrix
S relates a vector of incoming (complex) waves |ψin〉 on the
channels to the outgoing waves |ψout〉 on the same channels as
|ψout〉 = S |ψin〉. The scattering matrix is a complex function
of energy (or equivalently frequency) of the waves and con-
tains all the information about the scattering properties of the
system [1–4].

Lately, there has been renewed interest in the properties of
the scattering matrix in the complex frequency plane [5]. This
landscape is decorated with the poles and zeros of the scatter-
ing matrix, most of which lie off of the real frequency axis.
Identifying the locations of these features gives tremendous
insight into the scattering properties of the system, and their
movement in the complex plane as the system is perturbed is
also of great interest. Knowledge of pole and zero information
has practical application in the design of microwave circuits
[6], microwave bandpass filters [7] (where uniformity
of transmission time delay is critical [8]), transmission
through mesoscopic structures [9], and the creation of
embedded eigenstates [5,10,11], among many other examples.
Knowledge of the S-matrix singularities in the complex plane
allows one to create coherent virtual absorption through
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excitation of an off-the-real-axis zero [12], or virtual gain
through the excitation of an off-the-real-axis pole [13]. There
is also interest in finding the nontrivial zeros of the Riemann
ζ function by mapping them onto the zeros of the scattering
amplitude of a quantum scattering system [14]. Perturbing a
given system and bringing a scattering zero to the real axis
enables coherent perfect absorption of all excitations incident
on the scattering system [15–18]. Engineering the collision of
zeros and poles to create new types of scattering singularities
is also of interest for applications such as sensing [5,19–22].

In unitary (flux-conserving) scattering systems, time delay
is a real quantity measuring the time an injected excitation
resides in the interaction zone before escaping through the
ports [23,24]. This is a well-studied quantity in the chaotic
wave scattering literature, and its statistical properties have
been extensively investigated [25–36]. Recently, a complex
generalization of time delay that applies to subunitary scat-
tering systems was introduced, and this quantity turns out to
be much richer than its lossless counterpart [37–39]. It has
been demonstrated that complex Wigner-Smith time delay is
sensitive to the locations and statistics of the poles and zeros
of the full scattering matrix. One of the goals of this paper is to
extend the use of complex Wigner-Smith time delay (τW , the
sum of all partial time delays) to the transmission (τT ), reflec-
tion (τ (1)

R , τ
(2)
R ,...), and reflection time differences (τ (1)

R − τ
(2)
R ,

etc.) [40,41] of arbitrary multiport scattering systems. (Note
that τT and τR are complex, even for unitary scattering sys-
tems.) This in turn yields information about the poles and
zeros of the reflection and transmission submatrices of S. One
additional difference in our approach is the explicit inclusion
of uniform attenuation in the description of the scattering
system, a feature that is neglected in many other treatments
of time delay, as well as treatments of scattering matrix poles
and zeros.
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FIG. 1. (a) Schematic diagram of a generic ring graph connected
to two infinite leads. The two bonds have length L1 and L2. (b) Picture
of the experimental microwave ring graph, where a coaxial cable
and a coaxial microwave phase shifter are used as the two bonds.
(c) Schematic of the experimental setup with the microwave network
analyzer included. The two dashed red lines indicate the calibration
plane for the 2 × 2 S-matrix measurement.

Here our attention is fixed on a simple, but remarkably
important, scattering system, namely, the quantum ring graph.
In this context, a graph is a network of one-dimensional bonds
(transmission lines) that meet at nodes. One can solve the
Schrödinger equation for waves propagating on the bonds of
metric graphs and enforce boundary conditions at the nodes
[42–44]. The result is a closed system in which a complicated
interference of waves propagating on the bonds and meet-
ing at the nodes gives rise to a discrete set of eigenmodes.
Connecting this graph to M ports (infinitely long leads) cre-
ates the scattering system of interest to us here [45–50]. The
ring graph, consisting of just two bonds connecting the same
two nodes, which in turn are connected to M = 2 ports [see
Fig. 1(a)], is a ubiquitous and important scattering system.
It appears in many guises in different fields, but there is no
unified treatment of its scattering properties, particularly with
regard to time delay, to our knowledge. Among other things, it
forms the basis of nonreciprocal Aharonov-Bohm mesoscopic
devices, as well as various types of superconducting quantum
interference devices. The scattering properties of ring graphs
have been studied theoretically by a number of groups for their
embedded eigenstates [51,52] and for conditions of perfect
transmission [53,54].

Ring graphs with circumference � that are on the order
of the wavelength or longer are utilized as resonators in sev-
eral areas of research and applications. Such resonators can
display very narrow spectral features, which are accompa-
nied by large time delays. Ring resonators very elegantly and
simply illustrate several different types of resonances which
are known by a variety of names, including shape modes,
Feshbach modes [52,55,56], Fano modes [57], electromag-
netically induced transparency (EIT) modes [58], topological
resonances [59–61], bound states in the continuum [10,62–
65], and quasinormal modes [66,67], etc. Here we use the
shape or Feshbach terminology to discuss the modes, but our
results apply to ring graphs in all contexts. To illustrate the
ubiquity and importance of the ring graph, we next discuss

some of the diverse manifestations and properties of this sim-
ple graph.

Fano resonances have been studied by many authors in
the context of quantum transport through graphlike structures
[9,68,69]. The Fano resonance arises from the constructive
and destructive interference of a narrow discrete resonance
(typically a bound state of the closed system) with a broad
spectral line or continuum excitation, thus creating two
scattering channels [70,71]. The interference of these two
channels gives rise to the celebrated Fano resonance profile
[57,68].

EIT is a quantum phenomenon that arises from interference
between transitions taking place between multiple states [58].
It has a classical analog that can be realized in a wide variety
of coupled oscillator scenarios [72]. For example, an EIT or
Fano resonance feature was proposed for a generic resonator
coupled to an optical transmission line [73]. EIT phenomena
have also been created through metamaterial realizations in
which a strongly coupled (bright resonator) and weakly cou-
pled (dark resonator) oscillator are brought into interference
to completely cancel transmission and at the same time create
“slow light” (enhanced transmission time delay), all at one
wavelength [74–76].

In terms of applications, ring resonators have been em-
ployed in microwave circuit devices for many years [77,78]. It
was recognized that pairs of nearly degenerate modes exist in
this structure, and their interference could be used to advan-
tage [78,79]. Microstrip ring resonators are routinely created
with intentional defects or stubs in one arm, or are coupled
asymmetrically, to create interference of the nearly degenerate
modes [78].

EIT-like resonant features have been created in optical
microring resonators coupled to transmission lines by a num-
ber of groups. A classical analog of EIT was demonstrated
with two photonic ring resonators coupled to optical fibers
[80]. A set of two coupled microspheres, acting as ring res-
onators, showed the classical analog of EIT for light and
demonstrated a large transmission time delay [81]. An inte-
grated optical waveguide realization of the ring graph, with
one arm hosting a variable delay element, has been used to
create “EIT dips” with associated large transmission delay
[82]. Other work has used a pair of silicon microring photonic
resonators to create a nonreciprocal diode effect for light
(1630 nm) by exploiting a Fano resonance and nonlinearity
[83].

Mesoscopic ring graph structures made of metals and
semiconductors have been studied extensively for evidence
of electron interference in their transport properties [84–86].
Much of this work is focused on rings immersed in a magnetic
field and showing quantum interference properties arising
from the Aharonov-Bohm (AB) effect [87,88]. Aharonov-
Bohm rings with a localized trapping site in one arm have
been proposed to generate nonreciprocal transmission time
delay [89] and asymmetric transport [90].

Finally, superconducting quantum interference devices
(SQUIDs) are based on a loop graph structure that supports
a complex superconducting order parameter. The closed loop
structure creates a quantization condition for the magnetic
fluxoid, and the addition of one or more Josephson junctions
to the ring bonds, along with the addition of two leads, creates
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a sensitive magnetic flux to voltage transducer known as a dc
SQUID [91–93].

The purpose of this paper is to apply the complex time de-
lay approach to experimental data on a microwave realization
of the ring graph with the goal of identifying the complete
set of scattering poles, as well as scattering, transmission, and
reflection zeros, of the graph. With this information we are
able to thoroughly characterize the scattering properties of
this system and at the same time establish a basis that unifies
the many disparate approaches to describing the scattering
properties of this remarkable graph.

The outline of this paper is as follows. In Sec. II we
present expressions for the complex time delays in terms of
singularities of the scattering matrix. In Sec. III we discuss
the properties of the ring graph, including the predicted loca-
tions of its poles and zeros in the complex plane. Section IV
presents our experiment on the microwave realization of the
ring graph and measurements of the scattering matrix, and
Sec. V presents the complex time delays extracted from the
measured S matrix as a function of frequency, as well as fits to
reveal the locations of the scattering singularities. Section VI
uses the results from Sec. V to reconstruct det[S] over the en-
tire complex frequency plane. This is followed by a discussion
of all the results in Sec. VII and then conclusions in Sec. VIII.

II. COMPLEX TIME DELAYS AND SCATTERING POLES
AND ZEROS

A useful theoretical framework for the complex time de-
lay analysis is the so-called effective Hamiltonian formalism
for wave-chaotic scattering [4,28,94–96]. It starts with defin-
ing an N × N self-adjoint matrix Hamiltonian H whose real
eigenvalues are associated with eigenfrequencies of the closed
system. By further defining W to be an N × M matrix of

coupling elements between the N modes of H and the M scat-
tering channels, one can build the unitary M × M scattering
matrix S(E ) in the form

S(E ) = 1M − 2π iW † 1

E − H + i�W
W, (1)

where we defined �W = πWW †. Note that in this approach
the S-matrix poles En = En − i�n (with �n > 0) are complex
eigenvalues of the non-Hermitian effective Hamiltonian ma-
trix Heff = H − i�W �= H†

eff.
A standard way of incorporating the uniform absorption

with strength η is to replace E → E + iη in the S-matrix def-
inition. Such an S matrix becomes subunitary, and we denote
S(E + iη) := Sη(E ). The determinant of Sη(E ) is then given
by

det Sη(E ) := det S(E + iη) (2)

= det[E − H + i(η − �W )]

det[E − H + i(η + �W )]
(3)

=
N∏

n=1

E + iη − zn

E + iη − En
, (4)

where Eq. (3) follows from Eq. (1), and Eq. (4) expresses the
determinants in terms of the eigenvalues of the non-Hermitian
matrices involved. Here the S-matrix zeros zn are complex
eigenvalues of the non-Hermitian matrix H†

eff = H + i�W ,
i.e., zn = E∗

n .
Using the above expression, the Wigner-Smith (which we

shall abbreviate as Wigner) time delay can be very naturally
extended to scattering systems with uniform absorption as
suggested in [37] by defining

τW (E ; η) := −i

M

∂

∂E
log det S(E + iη) (5)

= Re τW (E ; η) + iIm τW (E ; η), (6)

Re τW (E ; η) = 1

M

N∑
n=1

[
�n − η

(E − En)2 + (�n − η)2
+ �n + η

(E − En)2 + (�n + η)2

]
, (7)

Im τW (E ; η) = − 1

M

N∑
n=1

[
E − En

(E − En)2 + (�n − η)2
− E − En

(E − En)2 + (�n + η)2

]
. (8)

We note that the complex Wigner time delay is a sum of
Lorentzians whose properties depend on the poles and zeros
of the full scattering matrix, as well as the uniform absorp-
tion. Prior work has shown that Eqs. (7) and (8) provide an
excellent description of the experimental complex time delay
for isolated modes of a lossy tetrahedral microwave graph
[37]. The statistical properties of complex time delay in an
ensemble of tetrahedral graphs are also in agreement with
those based on Eqs. (7) and (8) and the random matrix theory
predictions for the distribution of �n [39].

We can define the scattering matrix as S = (R T ′
T R′ )

in terms of the reflection submatrix R and transmission
submatrix T [21,22,97,98]. For a system with uniform ab-
sorption, the determinant of the transmission submatrix can
be written as

det Tη(E ) = (−2π i)M
det(E − H + iη) det

(
W †

2
1

E−H+iηW1
)

det[E − H + i(η + �W )]
,

(9)
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where the coupling matrix W = [W1 W2] is decomposed
into its port-specific N × M coupling matrices W1/2. We

can extend the transmission time delay [21] into a complex
quantity:

τT (E ; η) := −i
∂

∂E
log det T (E + iη) (10)

= Re τT (E ; η) + iIm τT (E ; η), (11)

Re τT (E ; η) =
N−M∑
n=1

Im tn − η

(E − Re tn)2 + (Im tn − η)2
+

N∑
n=1

�n + η

(E − En)2 + (�n + η)2
, (12)

Im τT (E ; η) = −
{

N−M∑
n=1

E − Re tn
(E − Re tn)2 + (Im tn − η)2

−
N∑

n=1

E − En

(E − En)2 + (�n + η)2

}
. (13)

Here tn = Re tn + iIm tn denote the complex zeros of det(T ),
while En = En − i�n are the same poles defined in Eq. (4).
Note in Eqs. (12) and (13) that the number of zero-related
terms is smaller than the number of pole-related terms [21].

Recent interest in the zeros of the S matrix in the complex
energy plane has motivated the use of the Heidelberg model
to introduce the concept of reflection time delays [40,41]. To
begin with, consider the special case of a two-channel (M =
2) flux-conserving scattering system which can be described
by the 2 × 2 unitary scattering matrix:

S(E ) =
(

R1(E ) t12(E )
t21(E ) R2(E )

)
. (14)

The two reflection elements R1,2(E ) at both channels may
have zeros rn in the complex energy plane.

In the presence of uniform absorption strength η, the full
scattering matrix S becomes subunitary, and |R1(E + iη)| �=
|R2(E + iη)| in general. In that case the reflection element
R1(E + iη) at channel 1 can be written in a similar form to
the det Sη and det Tη formalism:

R1(E + iη) = det
[
E − H + i

(
η − �

(1)
W + �

(2)
W

)]
det[E − H + i(η + �W )]

(15)

=
N∏

n=1

E + iη − rn

E + iη − En
, (16)

where �W = �
(1)
W + �

(2)
W , and rn = un + ivn are the positions

of reflection zeros, which are the complex eigenvalues of H +
i(�(1)

W − �
(2)
W ). Similarly, the reflection element R2(E + iη) at

channel 2 can be written as

R2(E + iη) = det
[
E − H + i

(
η − �

(2)
W + �

(1)
W

)]
det[E − H + i(η + �W )]

(17)

=
N∏

n=1

E + iη − r∗
n

E + iη − En
. (18)

Thus the reflection time delays in uniformly absorbing sys-
tems are introduced as

τ
(1)
R (E ; η) := −i

∂

∂E
log R1(E + iη) (19)

and

τ
(2)
R (E ; η) := −i

∂

∂E
log R2(E + iη). (20)

In full analogy with the complex Wigner time delay model,
the complex reflection time delay for channel 1, τ

(1)
R (E ; η), is

given by

Re τ
(1)
R (E ; η) =

N∑
n=1

[
vn − η

(E − un)2 + (vn − η)2
+ �n + η

(E − En)2 + (�n + η)2

]
, (21)

Im τ
(1)
R (E ; η) = −

N∑
n=1

[
E − un

(E − un)2 + (vn − η)2
− E − En

(E − En)2 + (�n + η)2

]
. (22)

Similarly, we also have the complex reflection time delay for channel 2, τ
(2)
R (E ; η):

Re τ
(2)
R (E ; η) =

N∑
n=1

[ −vn − η

(E − un)2 + (vn + η)2
+ �n + η

(E − En)2 + (�n + η)2

]
, (23)

Im τ
(2)
R (E ; η) = −

N∑
n=1

[
E − un

(E − un)2 + (vn + η)2
− E − En

(E − En)2 + (�n + η)2

]
. (24)
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Notice that the two reflection time delays share the same terms arising from the S-matrix poles; thus another useful quantity,
the complex reflection time difference, can be defined as δTR(E ; η) := τ

(1)
R (E ; η) − τ

(2)
R (E ; η) [40,41]:

Re δTR(E ; η) = Re τ
(1)
R (E ; η) − Re τ

(2)
R (E ; η) =

N∑
n=1

[
vn − η

(E − un)2 + (vn − η)2
+ vn + η

(E − un)2 + (vn + η)2

]
, (25)

Im δTR(E ; η) = Im τ
(1)
R (E ; η) − Im τ

(2)
R (E ; η) = −

N∑
n=1

[
E − un

(E − un)2 + (vn − η)2
− E − un

(E − un)2 + (vn + η)2

]
. (26)

The reflection time difference is determined solely by the
position of the reflection zeros and has no contribution from
the poles.

Our approach to defining and utilizing multiple types of
complex time delay overcomes a number of issues with prior
treatments. First, we treat poles and zeros on an equal footing,
as both contribute significantly to the complex time delay.
Secondly, the imaginary part of the time delay provides re-
dundant, but nevertheless useful, information about the pole
and/or zero locations. The imaginary part has one advantage
over the real part in terms of fitting to find pole and zero
locations: the imaginary part changes sign at each singularity,
leading to smaller tails at the locations of nearby singularities.
This is particularly useful for systems with a dense set of
modes. In all examples below, we fit both quantities simul-
taneously using a single set of fitting parameters. Finally,
our approach directly includes the effect of uniform loss,
frequently ignored in most prior treatments of time delay.
Note that we have previously examined the effects of vary-
ing lumped loss on the complex Wigner time delay [37] and
observed the resulting independent motion of the poles and
zeros in the complex plane (i.e., violating the condition that
zn = E∗

n , for example) [40,41,99,100].
We note in passing that the use of a complex time delay

will enhance the study of scattering phenomena governed by
pole or zero distributions. We have demonstrated this in the
context of coherent perfect absorption (CPA) [37,101], and
the generation of “cold spots,” in complex scattering systems
[101]. Further opportunities await the generalized Wigner-
Smith operator [102] and for the generation of “slow light.”

Finally, we note that although the Wigner-Smith time delay
is purely real for unitary scattering systems, the reflection and
transmission time delays are always complex due to the fact
that they are derived from subunitary parts of the full S matrix.
Thus a proper treatment of these delays must take into account
their complex nature, even in the flux-conserving limit.

III. THE RING GRAPH

Ring graph structures have appeared in quantum graph
studies, mesoscopic devices, microwave ring resonators, op-
tical microring resonators, and superconducting quantum
interference devices. It is a generic and important structure
for wave systems because it is a simple way to introduce wave
interference phenomena in a controlled manner.

As shown in the schematic diagram in Fig. 1(a), the ring
graph has two bonds, of lengths L1 and L2, connecting two
nodes. We assume that the bonds of the graph support travel-
ing waves in both directions, with identical propagation and

loss characteristics. The nodes are also connected to infinite
leads (ports). Coupling between the leads and ring graph is
provided by means of a three-way tee junction with ideal
scattering matrix:

Stee =
⎛
⎝−1/3 2/3 2/3

2/3 −1/3 2/3
2/3 2/3 −1/3

⎞
⎠.

We shall investigate the M = 2 scattering matrix S between
the left lead and the right lead in Fig. 1(a). Two cases are
of interest to us here: (i) rationally related bond lengths L1

and L2, including the case L1 = L2, and (ii) irrationally related
lengths L1 and L2.

A metric ring graph with L1 = L2 can support two distinct
eigenmodes. Each involves spanning the circumference of the
graph � = L1 + L2 with an integer number of wavelengths
of the wave excitation. One mode, which we call the shape
resonance, has a maximum of the standing wave pattern at the
nodes of the graph [51]. The second mode has a standing wave
pattern that is rotated one quarter of a wavelength relative
to the first and has zero amplitude at the nodes. Such an
embedded eigenstate on a ring graph with rationally related
bond lengths can have a compact eigenfunction, even though
the graph extends to infinity. In other words, the eigenmode is
nonzero over most of the ring graph but has zero amplitude at
the locations of the leads, preventing the mode from extending
into the leads. This means that the eigenvalue can be in a
continuum of states, but the eigenstate can have no amplitude
on the leads of the graph. Small perturbations to the length(s)
of the bond will move the pole off of the real axis and produce
a narrow high-Q resonance, along with a nearby complex
zero. This is known as a Feshbach mode.

Waltner and Smilansky [52] have made predictions for the
S-matrix zeros and poles for both shape and Feshbach reso-
nances of the ring graph. In the case of a symmetrical graph
(i.e., L1 = L2), or for graphs with rationally related lengths,
the scattering properties of the graph show shape resonances
only. The S-matrix poles of the shape resonances are given by

ES,symm
n = nc/� − i c ln 3/(π�), (27)

where � = L1 + L2 is the total electrical length of the ring
graph, c is the speed of light in vacuum (here we specialize to
the case of microwave ring graphs), and n is the mode index
(n = 1, 2, 3, ...). The S-matrix zeros are simply the complex
conjugates of the poles:

zS,symm
n = nc/� + i c ln 3/(π�). (28)

The Feshbach modes are not visible in this case.
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In the case of a nonsymmetrical graph (i.e., δ = L1 − L2 �=
0 and L1/L2 is not rational), the graph has both shape and
Feshbach resonances. In the limit of nδ � �, the S-matrix
poles of the Feshbach resonances are given by

EF,asymm
n ≈ nc/� − i (c/2π )[(2πnδ)2/(8�3)], (29)

while the poles of the shape resonances become
ES,asymm

n ≈ (nc/� + α) − i [c ln 3/(π�) + β], where
α = ncδ2 ln 3/(2�3) and β = (c/2π )[(2 ln 3)2 −
(2πn)2]δ2/(8�3) are small changes compared to the
original pole locations, Eq. (27). Again, the S-matrix
zeros are complex conjugates of the pole locations:
zF,asymm

n = [EF,asymm
n ]∗ and zS,asymm

n = [ES,asymm
n ]∗. These

predictions will be tested in our analysis of complex time
delay data below.

We note that the imaginary part of the Feshbach pole (and
zero) in Eq. (29) increases in magnitude as (nδ)2. The Warsaw
group has studied the length asymmetry (δ) dependence of the
lowest frequency (n = 1) pole of the ring graph [61]. A cold
atom collision experiment has observed the flow of the shape
and Feshbach resonance poles as the system is perturbed [56].
In contrast with earlier work, we study the dependence of the
poles and zeros at two fixed bond lengths upon the mode index
n, among other things.

IV. EXPERIMENT

A picture of the ring graph experimental setup is shown in
Fig. 1(b). A 15-inch (38.1-cm) long coaxial cable is used as
the fixed-length bond L1, while a mechanically variable coax-
ial phase shifter is used as the variable length bond L2. The
coaxial cable has a center conductor that is 0.036 in (0.92 mm)
in diameter, a Teflon dielectric layer (with εr = 2.1 and μr =
1), and an outer conductor that is 0.117 in (2.98 mm) in
diameter. The center conductor is silver-plated copper-clad
steel, while the outer conductor is copper-tin composite. The
electrical length of the cable is given by the product of the
geometrical length and the index of refraction,

√
εrμr . The

phase shifter is a Model 3753B coaxial phase shifter from
L3Harris Narda-MITEQ that provides up to 60 degrees of
phase shift per GHz. The measurement cables (leads) are
connected to the ring graph through two Tee junctions, acting
as the nodes. When the graph is symmetrical (i.e., L1 = L2),
the total electrical length of the graph is �symm = 1.0993 m.
The graph shows a mean spacing between shape modes of
� f = 0.2729 GHz, giving rise to a Heisenberg time τH =
2π/� f of 23.02 ns. We measure the scattering response from
all the modes spanning the frequency range from 0 to 10 GHz,
encompassing modes n = 1 to n = 37.

To make the graph asymmetric (L1 �= L2) we set the phase
shifter to produce δ = 0.577 cm. Thus we maintain the condi-
tion nδ � � up to n = 37.

The time delay analysis involves taking frequency deriva-
tives of the measured S-matrix phase and amplitude data, and
this demands fine frequency resolution and careful measure-
ment. In order to obtain high-quality data, we first conducted
a careful calibration of the Agilent model N5242A microwave
vector network analyzer (VNA), utilizing an intermediate fre-
quency (IF) bandwidth of 100 Hz and a frequency step size
of 84.375 kHz (about 3 × 10−4 of the mean spacing between

1 = 2

1 ≠ 2

FIG. 2. Transmission spectrum |S21|2 vs frequency measured for
the first 18 modes of a microwave ring graph. Main figure shows the
transmission of nonequal lengths (L1 �= L2) between the phase shifter
and the coaxial cable, while the inset shows the case of equal lengths
(L1 = L2). The sinusoidal wiggles come from the shape resonances,
while the narrow dips come from the Feshbach resonances. Note that
the data in the inset shows no narrow resonances.

shape resonances). The calibration process creates boundary
conditions for the microwaves that are equivalent to the pres-
ence of the two infinite leads connected to the nodes of the
ring graph. In other words, waves exiting the system will never
return. In addition, the scattering matrix is evaluated at the
plane of calibration as the ratio of ingoing and outgoing com-
plex waves measured at that point. The plane of calibration
is at the two nodes labeled by red dashed lines in Fig. 1(c).
We then measured the 2 × 2 S matrix of the graphs with the
same settings of the VNA. By doing so, we minimize the mea-
surement noise and acquire high-resolution data. The phase
of the S-matrix data was unwound into a continuous variation
to eliminate artificial discontinuities in time delay due to 2π

phase jumps. We also developed an algorithm for taking nu-
merical derivatives of the experimental data utilizing variable
frequency window smoothing settings. Given the number of
data points in a smoothing window, we obtained the overall
slope through a line fitting of all the data samples. The size of
the smoothing window can be dynamically adjusted based on
the variability of the phase and amplitude with frequency. All
of these steps are required to generate high-quality time delay
data for further analysis. Note that the numerical derivatives
are taken on the raw S-matrix data without any normaliza-
tion step or background subtraction, etc. There is no need to
augment or modify the raw S-matrix data, as it contains all
the information about the graph, including coupling, loss, and
scattering singularities.

The two types of modes present in the ring graph, namely,
shape resonances and Feshbach resonances, are illustrated in
the measured transmission |S21|2 vs frequency plot shown in
Fig. 2. The inset in Fig. 2 shows the transmission spectrum
when the two bond lengths are equal (L1 = L2). In this case
only the shape resonances appear in the scattering data. For
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FIG. 3. Comparisons between the experimental data and the
modeling for the complex Wigner time delay (upper plot) and for the
complex transmission time delay (lower plot), both normalized by
the Heisenberg time τH , as a function of frequency for a symmetric
(L1 = L2) microwave ring graph. The modeling data are plotted on
top of the experimental data and are in good agreement.

the main plot in Fig. 2, we tuned the electrical length of
the phase shifter so that the two bond lengths are not equal
(L1 �= L2) and not rationally related. The narrow Feshbach
resonances occur at lower frequencies than the shape reso-
nances, and their separation from the shape resonances grows
with mode number n, as predicted by Eq. (29) and demon-
strated in the following analysis.

V. COMPLEX TIME DELAY ANALYSIS ON RING GRAPH
DATA

In the case of a symmetrical graph, we analyze the complex
Wigner time delay and transmission time delay properties
of the shape resonances alone. Figure 3 shows the complex
Wigner (τW ) and transmission (τT ) time delay as a function
of frequency over 18 modes of the ring graph. The two time
delays are calculated from the measured S matrix based on
Eqs. (5) (Wigner) and (10) (transmission), respectively. Note
that in all comparisons of data and theory we treat frequency f
and energy E as equivalent. We also reconstruct the two time
delays based on the models from Eqs. (7) and (8) (Wigner) and
Eqs. (12) and (13) (transmission), using the scattering matrix
pole prediction from Eq. (27) and the zeros from Eq. (28).
The poles are calculated based on the measured dimension
(electrical length) of the ring graph, and the zeros are assumed
to be the complex conjugates of the poles. The modeled
complex time delays are plotted with the experimental data
in Fig. 3 and are in good agreement. (Due to uncertainties

in the lengths of the components, we adjusted � slightly to
precisely match the τW frequency dependence in Fig. 3.) Note
that in the complex transmission time delay modeling we use
only the pole information (there are no transmission zeros in
this case due the absence of an interfering mode [70]), while
in the complex Wigner time delay modeling we use both the
pole and zero information.

We note that although the model is in very good agree-
ment with the data in Fig. 3, there are a number of sharp
vertical features in the data that are not reproduced by the
model. Theoretical treatments of a δ function scatterer in
the ring graph show that imperfections in a symmetric graph
(L1 = L2) can give rise to Feshbach resonances [52,103].
We interpret the spikes seen in τW and τT as arising from
impedance discontinuities in the phase shifter and its coax-
ial connectors, acting effectively as δ-function scatterers. To
verify this, we measured a symmetric graph made up of two
identical fixed-length (15-inch) coaxial cables and found that
there are no sharp vertical features in the time delays in that
case.

Next we analyze the complex Wigner time delay and trans-
mission time delay properties for the Feshbach resonances of
the ring graph. We tuned the electrical length of the phase
shifter so that the two bond lengths are not equal or rationally
related (with δ ≈ 0.577 cm), and a set of Feshbach resonances
appear, as in Fig. 2. We followed the same procedure to cal-
culate the complex Wigner and transmission time delay from
the newly measured S matrix. Note that the shape resonances
are always present in the system. We first removed the effects
of the shape resonances from the overall time delay data by
subtracting their contributions to the time delay data. The
contributions from the shape resonances are modeled in the
same way as demonstrated in Fig. 3. (� has been slightly
adjusted to accommodate the length change of the ring graph
system.) We then fit the remaining complex time delay data
with the model Eqs. (7) and (8) (Wigner) and Eqs. (12) and
(13) (transmission) for each individual Feshbach mode. Both
the zero and pole locations, as well as the uniform absorption
strength η, are used as fitting parameters in this process. Note
that the real and imaginary parts of each time delay are fit
simultaneously with a single set of parameters. We also con-
strain the zeros to be complex conjugates of the poles during
the Wigner time delay fitting. One fitting example is shown
in Figs. 4(b) (Wigner) and 5(b) (transmission), respectively.
The fitting process was repeated for all 37 modes measured,
and all fits were very successful (see Appendix C for further
discussion about the transmission zeros). The fit parameters
for the complex zeros and poles, as well as the uniform atten-
uation, are plotted in Figs. 4 (Wigner) and 5 (transmission),
respectively.

We note that Eq. (29) predicts that the resonance
width �n (imaginary part of the pole) increases as
(c/2π )[(2πnδ)2/(8�3)]. Putting the measured values of �

and δ into this expression gives the red solid curve in Fig. 4,
which demonstrates very good agreement between the data
and the prediction in Eq. (29). Figure 4 also shows that the
uniform absorption strength η increases with frequency. A
more detailed discussion of uniform loss, with comparisons
to independent measurements and modeling, can be found in
Appendix B.
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(a)

(b)

FIG. 4. Comparison between fitted pole location parameters
(En = En − i�n) and predictions for multiple Feshbach modes of the
asymmetric microwave ring graph (L1 �= L2). Inset (a) shows the
comparison between fitted real parts of the zeros and the poles, along
with the prediction by Eq. (29) shown as a straight purple line. Inset
(b) shows such a representative fit to τW ( f ) for a single Feshbach
mode (n = 7).

There is an interesting competition between �n and η with
regards to the complex Wigner time delay in this graph.
Figure 4 shows that �n crosses over the value of η at ap-
proximately mode 27. Equation (7) shows that this will give

(a)

FIG. 5. Comparison between fitted pole location parameters
(En = En − i�n) obtained from the complex Wigner time delay (blue
circles) and the complex transmission time delay (red triangles) for
Feshbach modes of the asymmetric ring graph. The lower part of
the figure shows a comparison between fitted uniform attenuation
(−η) obtained from the complex Wigner time delay (yellow stars) in
Fig. 4 and fitted imaginary parts of the transmission zeros (Im tn − η)
obtained from the complex transmission time delay (green triangles)
on all measured Feshbach modes. Inset (a) shows a representative fit
to τT ( f ) for a single Feshbach mode (n = 7).

(a)

(b)

(c)

Frequency (GHz)

FIG. 6. Fitting example of reflection time difference or delay for
a single pair of shape and Feshbach resonances for a ring graph with
L1 �= L2. (a) Example of fitting complex reflection time difference
(δTR = τ

(1)
R − τ

(2)
R ) experiment data for mode n = 7. The left feature

is due to the Feshbach resonance, while the right one is due to the
shape resonance. (b, c) Demonstration of the reconstruction of the
individual reflection time delays on both ports, compared to the data,
using the fitted reflection zero and Wigner pole (see Fig. 4) infor-
mation. All time delays are presented normalized by the Heisenberg
time τH of the loop graph.

rise to a change in sign of the nearly resonant contribution to
Re[τW ]. This crossover-related sign change is clearly evident
in the full plot of Re[τW ] vs frequency in Fig. 12. Further,
Fig. 4(a) shows the fitted real parts of the zeros and poles
from the complex Wigner time delay, and they both increase
in proportion to n, as predicted in Eqs. (27) and (28) [52]. The
solid red line in Fig. 4(a) shows the prediction based on the
measured value of �.

In Fig. 5 we plot the fitted imaginary location of the poles
(in the form of �n + η) from the complex transmission time
delay data together with the previously extracted Wigner pole
data from Fig. 4, and they agree very well. This validates the
hypothesis that the two time delays (τW and τT ) share the same
pole information. Figure 5 also shows the fitted imaginary
parts of the zeros (in the form of Im tn − η) from the complex
transmission time delay for the Feshbach modes, together
with the previously extracted uniform attenuation value (−η)
from Fig. 4, and they match very well. This implies the trans-
mission zeros are purely real (i.e., Im tn = 0), and the data is
consistent with this interpretation. Further detailed discussion
on the transmission zeros can be found in Appendix C.

For the reflection time delay analysis, there are two sets of
zeros and poles, one each from the shape, and Feshbach res-
onances. One can use the reflection time difference quantity
to simplify the analysis, as it contains only the contribution
from the zeros. Figure 6 illustrates the reflection time delay
difference analysis process. Figure 6(a) is an example of fit-
ting the complex reflection time difference to Eqs. (25) and
(26) for a single pair of shape and Feshbach resonances. The
fitting process was repeated for all 37 × 2 modes utilizing two
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FIG. 7. Summary of all zeros and poles in the complex frequency
plane for shape and Feshbach resonances extracted from Wigner-
transmission-reflection time delay analysis for the first 37 modes of
the microwave ring graph. The Wigner zeros zS

n (blue squares) and
poles ES

n (red squares) of the shape resonances are located far from
the real axis. The Wigner zeros zF

n (blue circles) and poles EF
n (red

circles) of the Feshbach resonances are close to, and symmetrically
arrayed about, the real axis. The transmission zeros tF

n (blue crosses)
of the Feshbach resonances lie on the real axis. The reflection zeros
rF

n and rS
n of the Feshbach resonances (dark red triangles) and the

shape resonances (green squares) are symmetrically arrayed about
the real axis.

sets of the reflection zeros (rF
n = uF

n + ivF
n and rS

n = uS
n + ivS

n )
as fitting parameters (along with a single value for η for each
pair), and all fits were very successful. We then examined the
complex reflection time delay data for the individual channels
by putting the extracted two sets of reflection zeros (rF

n and
rS

n ) and the previously extracted Wigner poles (EF
n and ES

n )
into the modeling formula Eqs. (21)–(24). The modeling pre-
dictions (with no further fitting adjustments) are plotted with
the experimental data in Figs. 6(b) and 6(c), and they agree
remarkably well. This indicates that the individual reflection
time delays also share the same pole information with the
other time delays. Finally, we present a summary of all zeros
and poles extracted from the time delay analysis for the first
37 modes of the microwave ring graph in Fig. 7.

VI. S-MATRIX RECONSTRUCTION OVER THE COMPLEX
PLANE

Now that we have all the zero and pole information for
the scattering system, we would like to examine the modeling
for det S on the real frequency axis utilizing Eq. (4). We
reconstructed det S based on Eq. (4) and the extracted Wigner
zero and pole information summarized in Fig. 7. Figure 8
shows the comparison between the modeling of det S and the
experimental data for a symmetric graph that has the shape
resonances only, while Fig. 9 shows a similar plot with both
the shape and Feshbach resonances present in the scattering
system. The modeling agrees very well with the experiment

FIG. 8. Comparison of modeling (red line) and experimental data
(blue line) for det S with shape resonances only in a symmetrical
(L1 = L2) ring graph. The modeling data is calculated from Eq. (4)
using the Wigner zeros and poles for the shape resonances (see the
blue and red squares in Fig. 7). The upper plot shows the magnitude
of det S, while the lower plot shows the phase of det S.

for both the magnitude and phase of det S. Note that a small
delay (0.08 ns) had to be added to the model to show detailed
agreement with the data. We attribute this to about 2.4 cm
of uncalibrated transmission line outside of the loop graph,
occurring in the third port of each of the tee junctions.

Reconstructing the S matrix over the entire complex
frequency plane is generally difficult to accomplish experi-
mentally. Here we construct complex det S on the complex
frequency plane (E or f being complex) by continuation of
Eq. (4), along with the extracted Wigner zero and pole infor-
mation. Figure 10 (and Fig. 18) shows a three-dimensional
(3D) reconstruction of the complex det S for an asymmetric
ring graph evaluated over the complex frequency plane with
both the shape and Feshbach resonances present. We can see
a series of dips and peaks which reveal the zero and pole
locations in the complex frequency domain.

Other methods exist for S-matrix reconstruction. One ap-
proach is to use harmonic inversion, in which frequency
domain data is transformed into the time domain and fit to
a time delay made up of a sum of many poles [104–106]. This
technique is quite successful for finding poles but does not
directly determine the zeros of the S matrix. Note that com-
plex time delay can be used to augment a harmonic inversion
search for S-matrix poles. Another approach to finding scat-
tering poles is to use numerical methods to find outgoing-only
solutions to wave equations in terms of quasinormal modes
and therefore identify the complex pole positions [66,67]. A
more complete approach is to use Weierstrass factorization
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FIG. 9. Comparison of modeling (red dashed line) and exper-
imental data (blue line) for det S with both shape and Feshbach
resonances in an asymmetrical (L1 �= L2) ring graph. The modeling
data are calculated from Eq. (4) using the Wigner zeros and poles
for the shape resonances (see the blue and red squares in Fig. 7) and
the Wigner zeros and poles for the Feshbach resonances (see the blue
and red circles in Fig. 7). Upper plot shows the magnitude of det S,
while the lower plot shows the phase of det S.

of the S matrix and to also include solutions to the wave
equations that involve ingoing-only solutions to identify the
zeros of S [107,108]. This approach allows one to reexpress
the scattering matrix in terms of a sum of Lorentzians due to
the poles, with residues that depend on both the zeros and the
poles. Note that here we retrieve only det[S], but the full S
matrix can also be reconstructed [107,108].

If a passive zero-loss system hosts an embedded eigenstate,
i.e., a mode with zero decay rate, the corresponding S-matrix
pole will lie on the real frequency axis. In a passive system
with finite loss, this is only possible if there is also a degen-
erate S matrix of zero occurring at the same real frequency,
where they merge and cancel each other [5,11,19]. This seems
to describe the Feshbach poles and zeros of the ring graph in
the limit as n → 0. To measure the degree of coincidence of
the pole and zero, we can evaluate the residue of the Feshbach
poles as a function of mode number. The residue of det[S] due
to a single (assumed simple) Feshbach pole is given by ρF

n =
det[S(E )](E − EF,asymm

n )|E→EF,asymm
n

. This in turn can be writ-

ten as ρF
n ∝ E−zF,asymm

n

E−EF,asymm
n

(E − EF,asymm
n )|E→EF,asymm

n
= EF,asymm

n −
zF,asymm

n , which is just the distance between the Feshbach pole
and zero. Figure 11 shows the absolute magnitude of ρF

n as
a function of mode number based on the extracted Feshbach
poles and zeros. It is clear that in the limit of index going to

zero that the pole and zero approach each other, consistent
with the development of an embedded eigenstate. Also shown
in Fig. 11 is the associated Q value of the pole in terms of the
ratio EF

n /�F
n of the modes.

VII. DISCUSSION

Our comprehensive discussion of Wigner, transmission,
and the reflection complex time delays in Sec. II of the paper
gives us the opportunity to address the question, What is the
general strategy to maximize the real part of all the complex
time delays? From Eq. (7) we see that the real part of τW is
maximized when the imaginary part of a scattering pole �n

is equal to the uniform attenuation rate η. This divergence of
the Wigner time delay has been previously demonstrated in
the context of coherent perfect absorption by several groups
[37,38]. Also, for the microwave ring graph studied here, we
see from the plot of τW vs frequency in Fig. 12 that this con-
dition is nearly met somewhere around 7 GHz. With tuning of
either δ and/or η we could achieve the divergence of Re[τW ]
for one or more modes.

From Eq. (12) we see that the real part of τT is maximized
when the imaginary part of a transmission zero Im[tn] is
equal to the uniform attenuation rate η. In our data on the
microwave ring graph, the imaginary part of the transmission
zero is always negative and much smaller in magnitude than
the uniform attenuation, so the associated divergence is not
visible here. The data for complex τT vs frequency for all 37
modes is shown in Fig. 13. The transmission time delay shows
nearly sinusoidal oscillations arising from the shape modes
and a series of spikes arising from the Feshbach modes. As
expected, the transmission time delays are generally small in
magnitude and show no irregular variations associated with a
near degeneracy of Im[tn] and η.

Finally, from Eqs. (21), (23), and (25) we see that the
real part of either τ

(1)
R or τ

(2)
R , and the magnitude of δTR =

τ
(1)
R − τ

(2)
R , is maximized when the imaginary part of a re-

flection zero vn is equal to either plus or minus the uniform
attenuation rate, ±η. For our microwave ring graph, we see
from the plots of complex τR vs frequency in Fig. 14 that
this condition is nearly met for a number of modes, includ-
ing modes 1 and 14. The extreme values of reflection time
delay, on the order of hundreds of Heisenberg times, dwarfs
those of the Wigner and transmission times. In this case we
have vF

1 = −8.65 × 10−5 GHz, vS
1 = 1.05 × 10−4 GHz, and

η = 3.79 × 10−5 GHz for mode 1, and vF
14 = 0.0010 GHz,

vS
14 = 0.0045 GHz, and η = 0.0044 GHz for mode 14, result-

ing in large values for the real and imaginary parts of τR. To
summarize, we note that divergences in all time delays can be
tuned into existence through variation of uniform attenuation
η, or perturbations that systematically vary En, �n, tn, or rn.

What is the practical limit for the maximum value of
time delay? Constructing time delay from experimental S-
parameter data requires two nearby data points with which we
calculate a finite difference approximation to the derivative
of ln(det[S]). However, the singularity is at a single point in
frequency, and hence we can never achieve the true divergence
this way, although we can get arbitrarily close by taking finer
steps in parameter space. On the other hand, one can tune to
the CPA condition of a physical system containing a nonzero
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FIG. 10. Complex representation of det S evaluated over the complex frequency plane for several modes of an asymmetric (L1 �= L2) ring
graph. det S is calculated from Eq. (4) using complex frequency and the Wigner zeros and poles for the shape resonances (see the blue and red
squares in Fig. 7) and the Wigner zeros and poles for the Feshbach resonances (see the blue and red circles in Fig. 7). The 3D plot represents
| det S| on a log scale and reveals the zeros (dips) and poles (peaks) at different locations in complex frequency. The base plane shows contour
lines of the magnitude of | det S| in the complex frequency plane. The color bar on the right shows the phase of the constructed det S. The inset
shows a 2D top view of Arg[det S] for a single pair of shape and Feshbach zeros and poles.

loss and create an unbounded time delay at one frequency,
as demonstrated with CPA experiments in microwave graphs
[37].

FIG. 11. Plot of residue ρF
n and the “quality factor” of the Fes-

hbach poles vs mode index n for an asymmetric microwave loop
graph. The blue filled circles show the absolute magnitude of the
residue |ρF

n | as a function of mode index based on the extracted
Feshbach poles and zeros, while the red open diamonds show the
associated ratio of EF

n /�F
n of the Feshbach poles.

The introduction of complex time delay analysis now of-
fers the opportunity to study the detailed evolution of poles
and zeros in the complex plane when scattering systems are
subjected to a variety of perturbations. A number of methods
to controllably drive poles and zeros around the complex plane
have been developed in different contexts. As an example,
in the case of the ring graph, several authors have examined
the question of what trajectory an embedded eigenvalue pole
leaves the real axis as the ring graph is perturbed [51,61,109].
Another opportunity is the manipulation of reflection zeros in
the complex frequency plane for multiport scattering systems
to create what are known as reflectionless scattering modes
(RSMs) [20,110]. Reflection (τR) and reflection difference
(δTR) complex time delays will enable monitoring of reflec-
tion zeros so that they can be tuned to the real axis to establish
RSMs.

Wave-chaotic systems have scattering properties that are
very sensitive to changes in boundary conditions. This makes
such systems well suited to act as sensors of perturbation, such
as motion or displacement of objects located in the scattering
domain, through the concept of scattering fidelity [111–115].
In addition, there exists a class of sensors that are based on
the coalescence of two or more eigenmodes [116,117]. In
all cases, the longer the dwell time of a wave in a moni-
tored space, the greater its sensitivity to small perturbations
[38,118].

Finally, we discuss a number of important issues associated
with our approach to modeling the complex time delays. In
this paper we have taken two distinctly different approaches
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(a) (b)

FIG. 12. Complex Wigner time delay τW (normalized by the Heisenberg time τH ) determined from measured S-matrix data for 37 modes
(0–10 GHz) in an asymmetrical (L1 �= L2) microwave ring graph. The extreme values of τW are dominated by Feshbach resonances. Note the
sign change of the Re[τW ] extreme values near 7 GHz, which corresponds to the crossover between �n and η in Fig. 4. Insets (a) and (b) show
zoomed-in details of the complex Wigner time delay for individual modes on either side of the crossover.

(a)

(b)

FIG. 13. Complex transmission time delay τT determined from measured S-matrix data for 37 modes (0 − 10 GHz) in an asymmetrical
(L1 �= L2) microwave ring graph normalized by the Heisenberg time τH . The extreme values of τT are dominated by Feshbach resonances. The
nearly sinusoidal variations of Re[τT ] and Im[τT ] with frequency are due to the shape resonances. Insets (a) and (b) show the zoomed-in details
of the complex transmission time delay for two individual modes.
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FIG. 14. Complex reflection time delays τ
(1)
R , τ

(2)
R and their difference δTR = τ

(1)
R − τ

(2)
R determined from measured S-matrix data for 37

modes (0–10 GHz) in an asymmetrical (L1 �= L2) microwave ring graph, normalized by the Heisenberg time τH . Insets show the zoomed-in
details of the complex reflection time delay or difference for individual sets of shape and Feshbach modes.

to modeling the measured time delay. In the case of the shape
resonances, the poles and zeros are relatively far removed
from the real axis; the ratio of the imaginary part of the pole
(and zero) to the mean spacing is approximately �S

n/�ES
n ∼

0.35. In this case, many poles and zeros contribute to the
Wigner time delay (as an example) at any given point on the
real frequency axis. For this reason we fit all of the pole and
zero locations at once for the data in Fig. 3. In addition, the
product over modes in Eq. (4) extends over ±200 modes in
order to properly reproduce det S in Figs. 8 and 9. On the
other hand, when poles and zeros are close to the real axis,
it is possible to treat each pole or zero pair individually. This
is the case for the Feshbach resonances where we find the
ratio of the imaginary part of the pole to the mean spacing is
roughly �F

n /�EF
n ∼ 0.01. In this case the contribution to the

time delay in a given narrow frequency window is dominated
by the nearest pole and zero. This is the case for the fits shown
in the insets of Figs. 4 and 5, and the fits shown in Fig. 6. We
have checked this assumption by a number of methods. First,
our correct recovery of the measured det S on the real axis, as
shown in Fig. 9, is a clear test of the assumption that the fitting
of individual Feshbach poles and zeros is adequate to model
the global scattering matrix at arbitrary real frequencies. Sec-
ondly, we have checked that adding terms to the complex time
delay arising from neighboring poles and zeros has no effect
on our fitting of individual mode data, such as those shown in
the insets of Figs. 4 and 5.

There is one additional potential limitation of the above
description of complex time delay. Assuming a single uni-
form value of the loss parameter η at a given frequency is
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an approximation, especially for our ring graph. The graph
has a variable phase shifter in it that is not a homogeneous
transmission line. There may be pointlike loss centers that
exist in this microwave graph which we are not modeling
properly with just a uniform attenuation. Also, in the fitting of
complex time delay vs frequency, we assume that the value of
η is constant in the narrow frequency range around each pair
of shape or Feshbach modes (as in Fig. 6), although we believe
that this is a good approximation for the data and analysis
presented here.

VIII. CONCLUSIONS

We provide a comprehensive analysis of the ring graph
scattering response in terms of poles and zeros of the S ma-
trix, and the reflection and transmission submatrices. We have
treated the complex Wigner-Smith, reflection, and transmis-
sion time delays on equal footing, all in one experimental
setting. We also create a faithful reconstruction of the com-
plex determinant of the S matrix over the complex frequency
plane from the experimentally extracted poles and zeros. More
generally, we provide a comprehensive treatment of com-
plex Wigner, transmission, reflection, and reflection difference
time delays. We also provide a prescription for maximizing
the real part of all complex time delays in terms of the poles
and zeros of the scattering matrix, and the uniform attenuation
in the system.
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APPENDIX A: ADDITIONAL DATA

Here we present the complex Wigner-Smith (τW ) (Fig. 12),
transmission (τT ) (Fig. 13), and reflection (τR) (Fig. 14)
time delays over the full measurement frequency range (0–
10 GHz), including all 37 modes of the asymmetrical (L1 �=
L2) microwave ring graph. Examining the complex time de-
lays over a broad range of frequency brings out new aspects
of the data, as discussed in Sec. VII.

Figure 12 shows the complex Wigner time delay extracted
from the experiment over the entire measurement frequency
range. We have already noted in Sec. V the change in sign
of Re[τW ] as a function of frequency due to the crossover of
the imaginary part of the Feshbach pole �n and the uniform
attenuation η. Another feature to note is that the shape res-
onances produce a relatively small variation in τW compared
to the sharp features arising from the Feshbach modes. Both
features together create time delays on the scale of at most tens
of Heisenberg times in this particular experimental realization
and frequency range.

Figure 13 shows the complex transmission time delay
extracted from the experiment over the entire measurement
frequency range. We note that the magnitude of the transmis-
sion time delays are limited in magnitude to approximately
2 times the Heisenberg time in this case. The reason for

such small variations is that the transmission time delays
have contributions from both the zeros and the poles, and the
two contributions have similar magnitudes but opposite signs.
Thus the resulting transmission time delays are rather small
compared to τW and τR. Further detailed discussion of τT is
given in Appendix C.

The reflection time delays shown in Fig. 14 show signif-
icantly larger range of variation as compared to the Wigner
and transmission time delays. To see why this is the case,
we can examine Eqs. (21)–(24), which model the behavior of
the reflection time delays. One can see that the width and the
extreme value of the first Lorentzian term is determined by
|vn ± η|. The reflection zeros rn = un + ivn are the complex
eigenvalues of H + i(�(1)

W − �
(2)
W ). In our experimental setup,

we have very similar coupling properties for ports 1 and 2, i.e.,
�

(1)
W ≈ �

(2)
W . Thus the imaginary part of the reflection zeros

vn should be fairly small. At low frequencies, the uniform
attenuation η is also very small and is comparable to vn. This
leads to a very small width of the Lorentzian resonance, which
in turn produces very large extreme values of the reflection
time delay, on the order of hundreds of Heisenberg times, at
low frequencies. At larger frequencies, however, the uniform
attenuation η becomes fairly large and dominates the width of
the Lorentzian resonance. Therefore the reflection time delays
change back to the order of a few Heisenberg times.

APPENDIX B: UNIFORM ATTENUATION ESTIMATION
FOR COAXIAL CABLE

We estimate the uniform attenuation η in the ring graph
system both theoretically and experimentally. From [119] we
derived the corresponding expression for the uniform attenu-
ation (�) of a homogeneous coaxial cable, expressed in terms
of an angular frequency:

� = 1

2

[
2π f tan δ +

√
2π f ρ

2μ0

1√
εr

1

ln (b/a)

(
1

a
+ 1

b

)]
,

(B1)

where f is the linear frequency, tan δ = 0.000 28, and εr =
2.1 are the dielectric loss tangent the relative dielectric con-
stant of the Teflon dielectric, ρ = 4.4 × 10−8 �m is the
resistivity of the metals in the cable, μ0 = 4π × 10−7 H/m
is the permeability of vacuum, and a = 0.46 × 10−3 m and
b = 1.49 × 10−3 m are the radii of the inner and outer con-
ductors, respectively. These values are typical for the coaxial
cables used in our experiments.

We also performed a direct measurement of the uniform
attenuation for the components making up the ring graph.
We connected the coaxial cable and the phase shifter from
Fig. 1(b) in series and measured the transmission S21 insertion
loss as a function of frequency. The comparison of uniform
attenuation between direct measurement (from S21), fitting
results (η), and the modeling (�) is plotted in Fig. 15. The
agreement between these three independent estimates is rea-
sonably good. Note that the coaxial phase shifter is not a
uniform coaxial structure, and evidence of internal resonances
are visible in Fig. 15 above 7 GHz. Note that the fit η values
are slightly higher than the direct loss measurement below
7 GHz but then are slightly lower above that frequency. This
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FIG. 15. Comparison of three different ways to determine the
uniform attenuation of the loop graph: by means of direct measure-
ment of insertion loss through S21, fitting results to complex time
delays (η), and direct modeling (�). The blue line shows the data
obtained by measuring the S21 insertion loss of a serial connection of
the coaxial cable and the phase shifter shown in Fig. 1(b). The yellow
stars show the fitting results for η from the complex Wigner time
delay analysis in Fig. 4. The red line shows the theoretical modeling
[Eq. (B1)] of �/2π in a coaxial cable.

comparison gives us confidence that the values of η extracted
from complex time delay analysis are quite reasonable.

APPENDIX C: TRANSMISSION ZEROS

In the transmission zero analysis for the Feshbach reso-
nances, we fit the experimental data to Eqs. (12) and (13),
after removing the contributions from the shape resonances.
We may rewrite the complex transmission time delay as τT =
τ Z

T + τP
T [21], where τ Z

T and τP
T are the contributions from

zeros and poles, respectively. Then Eqs. (12) and (13) can be
rewritten as

Re τ Z
T (E ; η) =

N−M∑
n=1

Im tn − η

(E − Re tn)2 + (Im tn − η)2
, (C1)

Im τ Z
T (E ; η) = −

N−M∑
n=1

E − Re tn
(E − Re tn)2 + (Im tn − η)2

, (C2)

Re τP
T (E ; η) =

N∑
n=1

�n + η

(E − En)2 + (�n + η)2
, (C3)

Im τP
T (E ; η) =

N∑
n=1

E − En

(E − En)2 + (�n + η)2
. (C4)

We plot τ Z
T and τP

T for a single Feshbach mode (n = 1)
in Fig. 16. Here τP

T is calculated using the pole information
extracted from the complex Wigner time delay analysis
(see Fig. 4), since all three time delays share the same
poles. τ Z

T can then be obtained through τ Z
T = τT − τP

T ,
where τT is the experimental data. Figure 16 shows that τ Z

T
and τP

T are approximately equal in magnitude, both much

(a) (b)

(c)

Frequency (GHz)

FIG. 16. Complex transmission time delay data for a single Fes-
hbach mode (n = 1) and its contributions from zeros and poles.
(a) Total complex transmission time delay data (τT ), (b, c) contri-
bution from the zero (τ Z

T ) and the pole (τP
T ), respectively. Here τT is

from experimental data, while τP
T is calculated based on Eqs. (C3)

and (C4) with the pole information extracted from the complex
Wigner time delay analysis (see Fig. 4). τ Z

T is obtained by τ Z
T =

τT − τP
T .

larger than τT , but have opposite signs. From [21,22] we
learned that the transmission zeros tn will be on the real
axis, i.e., Im[tn] = 0, such that Im[tn] − η = −η. For this
(n = 1) Feshbach mode, the imaginary part of the pole
�n is very small compared to the uniform attenuation η

(see Fig. 4), and thus we have �n + η ≈ η. Under such

FIG. 17. Comparison between the peak value of Re[τ Z
T ] and

−η−1 for all 37 modes of the microwave ring graph. Blue circles
show the peak value of Re[τ Z

T ] from experimental data, while red
triangles show −η−1 calculated from the data in Fig. 4. Both quanti-
ties are presented normalized by the Heisenberg time τH of the loop
graph.
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FIG. 18. Complex representation of det S evaluated over the complex frequency plane for several modes of an asymmetric (L1 �= L2)
microwave ring graph. This 3D plot shows another perspective of Fig. 10.

conditions, Eqs. (C1)–(C4) can be written as Re[τ Z
T ]n=1 =

−η/[(E − Re tn)2 + η2], Re[τP
T ]n=1 ≈ +η/[(E − En)2 + η2],

Im[τ Z
T ]n=1 = −(E − Re tn)/[(E − Re tn)2 + η2], and

Im[τP
T ]n=1 ≈ (E − En)/[(E − En)2 + η2]. Since Re tn ≈ En,

we then arrive at [τ Z
T ]n=1 ≈ −[τP

T ]n=1, which is consistent
with what is shown in Fig. 16. This also explains why
τT = τ Z

T + τP
T is so small for this Feshbach mode (n = 1) [see

Fig. 16(a)].
When analyzing the transmission time delay data, one may

assume either a single zero or a conjugate pair of zeros in the
modeling [21,22]. We tried using a conjugate pair of zeros
to fit the data but were unable to achieve reasonable fitting
results. A pair of zeros would contribute to the real part of
transmission time delay with a local extremum at E = Re tn of
Re[τ Z

T ] = 2η

(Im tn )2−η2 . Unfortunately, this expression demands

negative values for (Im tn)2 for our data; therefore the pair

of zeros assumption is inconsistent with the data. On the
other hand, the contribution of a single zero to Re[τT ] is
Re[τ Z

T ] = −η

(E−Im tn )2−η2 , with peak value −η−1. We plot the

comparison between the peak value of Re[τ Z
T ] (from data)

vs −η−1 (from Fig. 4) for all 37 modes in Fig. 17, and they
agree extremely well, justifying our single-zero hypothesis. In
summary, placing all of the transmission zeros on the real axis
is consistent with the data.

APPENDIX D: ADDITIONAL det[S] RECONSTRUCTION
PLOT

We show in Fig. 18 the reconstruction of complex det[S]
over the complex frequency plane from a different perspective
compared to Fig. 10, highlighting the phase variation in the
region between the shape and Feshbach resonances.
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